A Review of Unsupervised Keyphrase Extraction Methods Using Within-Collection Resources

Author:

Sun ChengyuORCID,Hu Liang,Li Shuai,Li Tuohang,Li HongtuORCID,Chi Ling

Abstract

An essential part of a text generation task is to extract critical information from the text. People usually obtain critical information in the text via manual extraction; however, the asymmetry between the ability to process information manually and the speed of information growth makes it impossible. This problem can be solved by automatic keyphrase extraction. In this paper, the mainstream unsupervised methods to extract keyphrases are summarized, and we analyze in detail the reasons for the differences in the performance of methods then provided some solutions.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference60 articles.

1. Improving Performance of Text Summarization

2. Non-Monotonic Sequential Text Generation;Welleck;arXiv,2019

3. Neural Text Generation with Unlikelihood Training;Welleck;arXiv,2019

4. Data-to-Text Generation with Content Selection and Planning

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Keyphrase Extraction Using Pre-Trained Language Models BERT and Topic-Guided Graph Attention Networks;2024 International Conference on Data Science and Its Applications (ICoDSA);2024-07-10

2. Deep learning and embeddings-based approaches for keyphrase extraction: a literature review;Knowledge and Information Systems;2024-07-05

3. Y-Rank: A Multi-Feature-Based Keyphrase Extraction Method for Short Text;Applied Sciences;2024-03-16

4. Novel Approach for the Extraction of Keywords from Text Document;2024 International Conference on Social and Sustainable Innovations in Technology and Engineering (SASI-ITE);2024-02-23

5. GWebPositionRank: Unsupervised Graph and Web-based Keyphrase Extraction form BERT Embeddings;2024 IEEE International Conference for Women in Innovation, Technology & Entrepreneurship (ICWITE);2024-02-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3