Mechanical Stability of Screw-Retained Monolithic and Bi-layer Posterior Hybrid Abutment Crowns after Thermomechanical Loading: An In Vitro Study

Author:

Spitznagel Frank A.ORCID,Bonfante Estevam A.,Campos Tiago M. B.,Vollmer Maximilian A.,Boldt Johannes,Doerken Sam,Gierthmuehlen Petra C.

Abstract

To evaluate the failure-load and survival-rate of screw-retained monolithic and bi-layered crowns bonded to titanium-bases before and after mouth-motion fatigue, 72 titanium-implants (SICvantage-max, SIC-invent-AG) were restored with three groups (n = 24) of screw-retained CAD/CAM implant-supported-single-crowns (ISSC) bonded to titanium-bases: porcelain-fused-to-metal (PFM-control), porcelain-fused-to-zirconia (PFZ-test) and monolithic LDS (LDS-test). Half of the specimens (n = 12/group) were subjected to fatigue in a chewing-simulator (1.2 million cycles, 198 N, 1.67 Hz, thermocycling 5–55 °C). All samples were exposed to single-load-to-failure without (PFM0, PFZ0, LDS0) or with fatigue (PFM1, PFZ1, LDS1). Comparisons were statistically analyzed with t-tests and regression-models and corrected for multiple-testing using the Student–Neuman–Keuls method. All PFM and LDS crowns survived fatigue exposure, whereas 16.7% of PFZ showed chipping failures. The mean failure-loads (±SD) were: PFM0: 2633 ± 389 N, PFM1: 2349 ± 578 N, PFZ0: 2152 ± 572 N, PFZ1: 1686 ± 691 N, LDS0: 2981 ± 798 N, LDS1: 2722 ± 497 N. Fatigue did not influence load to failure of any group. PFZ ISSC showed significantly lower failure-loads than monolithic-LDS regardless of artificial aging (p < 0.05). PFM ISSC showed significantly higher failure loads after fatigue than PFZ (p = 0.032). All ISSC failed in a range above physiological chewing forces. Premature chipping fractures might occur in PFZ ISSC. Monolithic-LDS ISSC showed high reliability as an all-ceramic material for screw-retained posterior hybrid-abutment-crowns.

Funder

To Fundação de Amparo a Pesquisa do Estado de São Paulo

CAPES

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3