Investigations of Deformation Behavior and Microstructure of Al Tailored Ti–Mo High Temperature Shape Memory Alloys during Isothermal Holding at 393 K

Author:

Nohira NaokiORCID,Oshita Yoshiaki,Chiu Wan-Ting,Umise Akira,Tahara Masaki,Hosoda HidekiORCID

Abstract

To utilize β-Ti based high temperature (HT) shape memory alloys (SMAs), a high Al concentration of 14 mol% was designed for sufficient suppressing the undesired ω-phase. HTSMA exhibits shape memory effect (SME) above 373 K, and thus the operating temperature is over 373 K. However, the SME and the mechanical properties of most β-Ti SMAs deteriorate after holding at elevated temperatures due to the ω-embrittlement. The Ti-4.5Mo-14Al alloy (mol%) and the Ti-6Mo-7Al alloy as a comparison, both of which possess the identical reverse martensitic transformation start temperature of 407 K, were isothermally held at 393 K for up to 360 ks, and deformation behaviors and microstructures were investigated. It was found that after the isothermal holding, the deformation behavior of the Ti-6Mo-7Al alloy altered significantly; on the other hand, that of the Ti-4.5Mo-14Al alloy remained almost intact. Transmission electron microscopy observations revealed that the isothermal ω-phase (ωiso) was successfully suppressed in the Ti-4.5Mo-14Al alloy, while the ωiso phase grew in Ti-6Mo-7Al alloy. Moreover, the isothermal α″-phase coexisted in the Ti-4.5Mo-14Al alloy. It is concluded that a high Al concentration is a crucial prerequisite in the practical β-Ti HTSMAs. The presented design could be a useful guideline for developing Ti SMAs with comparable Mo- and Al-equivalents.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Earth-Surface Processes

Reference23 articles.

1. Shape Memory and Superelastic Alloys: Applications and Technologies;Yamauchi,2011

2. Materials Properties Handbook: Titanium Alloys;Boyer,1994

3. Shape memory behavior of Ti–Ta and its potential as a high-temperature shape memory alloy

4. High-temperature shape memory alloys

5. High temperature shape memory alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3