First-Principles Investigation of Structural, Thermoelectric, and Optical Properties of Half-Heusler Compound ScRhTe under Varied Pressure

Author:

Wei Junhong,Guo Yongliang,Wang Guangtao

Abstract

We thoroughly investigated the electronic structure and various properties of the half-Heusler compound ScRhTe using density functional theory calculations. The electronic structure shows that ScRhTe is a narrow-band-gap semiconductor. Owing to its characteristic conduction-band structure, ScRhTe has a higher Seebeck coefficient and a higher power factor for n-type doping than for p-type doping, with the maximum value of −493 µV K−1 appearing at 900 K. The optimal carrier concentration is approximately 5 × 1019 cm−3–1 × 1020 cm−3. In addition, ZTe is estimated as 0.95 at a doping level of approximately 1019 cm−3. Under pressure, the band structure changes from a direct to an indirect band gap, and the band gap increases as the pressure changes from tensile to compressive. The thermoelectric properties of ScRhTe improve under compressive pressure, whereas the optical properties improve greatly under tensile pressure. By varying the pressure, the electronic structure and various properties of ScRhTe can be effectively adjusted, which signifies that ScRhTe has the potential to become an important optoelectronic or thermoelectric material.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3