Fe-Doped CuO/MWCNT as a Sensing Material for Electrochemical Detection of Nitrite

Author:

Pitiphattharabun Siraprapa,Auewattanapun Krittin,Sato Nicha,Janbooranapinij Kasidit,Techapiesancharoenkij RatchateeORCID,Panomsuwan GasiditORCID,Ohta JunORCID,Jongprateep OrataiORCID

Abstract

With unique electrical and catalytic properties, CuO has been ubiquitously employed in many applications including electrochemical sensors. Enhanced electrocatalytic performance of CuO can be achieved through doping. This work explored the potential of 3 mol% Fe-doped CuO/multi-walled carbon nanotube (MWCNT) composite for nitrite detection. The undoped CuO and 3 mol% Fe-doped CuO powders, prepared using a solution combustion technique, had average particle sizes lower than 100 nanometres. Particle refinement and enhancement of the specific surface area were observed in 3 mol% Fe-doped CuO. CuO/MWCNT and 3 mol% Fe-doped CuO/MWCNT composites, prepared using the hydrothermal impregnation technique, were tested for their electrocatalytic activities in the presence of nitrite. Cyclic voltammetry results revealed reduction reaction at an applied voltage of approximately −0.4 V. Superior peak currents were evident in the 3 mol% Fe-doped CuO/MWCNT composite. With acceptable sensitivity, limit of detection, selectivity, reusability, and recovery percentage, the 3 mol% Fe-doped CuO/MWCNT composite demonstrated potential capability in the detection of nitrite.

Funder

Office of the Ministry of Higher Education

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3