Evaluation of Vision-Based Hand Tool Tracking Methods for Quality Assessment and Training in Human-Centered Industry 4.0

Author:

De Feudis IrioORCID,Buongiorno DomenicoORCID,Grossi Stefano,Losito Gianluca,Brunetti AntonioORCID,Longo Nicola,Di Stefano Giovanni,Bevilacqua VitoantonioORCID

Abstract

Smart industrial workstations for the training and evaluation of workers are an innovative approach to face the problems of manufacturing quality assessment and fast training. However, such products do not implement algorithms that are able to accurately track the pose of a hand tool that might also be partially occluded by the operator’s hands. In the best case, the already proposed systems roughly track the position of the operator’s hand center assuming that a certain task has been performed if the hand center position is close enough to a specified area. The problem of the pose estimation of 3D objects, including the hand tool, is an open and debated problem. The methods that lead to high accuracies are time consuming and require a 3D model of the object to detect, which is why they cannot be adopted for a real-time training system. The rise in deep learning has stimulated the search for better-performing vision-based solutions. Nevertheless, the problem of hand tool pose estimation for assembly and training procedures appears to not have been extensively investigated. In this study, four different vision-based methods based, respectively, on ArUco markers, OpenPose, Azure Kinect Body Tracking and the YOLO network have been proposed in order to estimate the position of a specific point of interest of the tool that has to be tracked in real-time during an assembly or maintenance procedure. The proposed approaches have been tested on a real scenario with four users handling a power drill simulating three different conditions during an assembly procedure. The performance of the methods has been evaluated and compared with the HTC Vive tracking system as a benchmark. Then, the advantages and drawbacks in terms of the accuracy and invasiveness of the method have been discussed. The authors can state that OpenPose is the most robust proposal arising from the study. The authors will investigate the OpenPose performance in more depth in further studies. The framework appears to be very interesting regarding its integration into a smart workstation for quality assessment and training.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3