Author:
Forna Norin,Damir Daniela,Duceac Letitia Doina,Dabija Marius Gabriel,Calin Gabriela,Ichim Daniela Luminita,Gutu Cristian,Grierosu Carmen,Eva Lucian,Ciuhodaru Mădălina Irina,Goroftei Elena Roxana Bogdan,Banu Elena Ariela,Stafie Liviu,Gabriela Ciolpan,Mitrea Geta,Marcu Constantin
Abstract
Recently, nanotechnology research studies have been proven that use of various nanoparticles as drug delivery systems to target and to annihilate pathogenic microorganisms may be a good solution for prevention and treatment of severe infection. In the last few years, antimicrobial drug encapsulation into nano-sized systems has materialized as a promising alternative that increased drug efficacy and minimized adverse effects. Physicochemical properties of erythromycin-loaded polymer nanoparticles were assessed using particle size distribution, HPLC, FTIR, TG/DTA, and SEM characterization techniques. The as-prepared samples exhibited an average particle size of 340 and 270 nm, respectively, with erythromycin content of 99.7% in both samples. From the release profile of erythromycin from PLA/PLGA, a prolonged drug release can be observed from both Ery-PLA and Ery-PLGA nanostructures. Morphology images exhibited spherical, rigid, and ring-shaped nanoparticles. Thermal analytical study in the case of Ery-PLA and Ery-PLGA samples showed that pure drug has an endothermic peak at around 150 °C assigned to a melting point. The antibiotic melting peak disappeared for both antibiotic-loaded PLA and PLGA nanoparticles thermographs, denoting the presence of erythromycin. This indicates that the antibiotic is uniformly dispensed throughout the host polymer matrix at nanometer scale. FTIR spectra of Ery-PLA and Ery-PLGA nano-architectures with almost similar peaks indicated no alteration in chemical structure of drug-loaded polymer nanoparticles.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献