Accelerated Particle Swarm Optimization Algorithms Coupled with Analysis of Variance for Intelligent Charging of Plug-in Hybrid Electric Vehicles

Author:

Bakht Khush1,Kashif Syed Abdul Rahman1ORCID,Fakhar Muhammad Salman1ORCID,Khan Irfan Ahmad2ORCID,Abbas Ghulam3ORCID

Affiliation:

1. Department of Electrical Engineering, University of Engineering and Technology, Lahore 54890, Pakistan

2. Clean and Resilient Energy Systems (CARES) Lab, Electrical and Computer Engineering Department, Texas A&M University, Galveston, TX 77553, USA

3. Department of Electrical Engineering, The University of Lahore, Lahore 54000, Pakistan

Abstract

Plug-in hybrid electric vehicles (PHEVs) and plug-in electric vehicles (PEVs) have gained enormous attention for their ability to reduce fuel consumption in transportation and are, thus, helpful in the reduction of the greenhouse effect and pollution. However, they bring up some technical problems that should be resolved. Due to the ever-increasing demand for these PHEVs, the simultaneous connection of large PEVs and PHEVs to the electric grid can cause overloading, which results in disturbance to overall power system stability and quality and can cause a blackout. Such situations can be avoided by adequately manipulating power available from the grid and vehicle power demand. State of charge (SoC) is the leading performance parameter that should be optimized using computational techniques to charge vehicles efficiently. In this research, an efficient metaheuristic algorithm, accelerated particle swarm optimization (APSO), and its five variants were applied to allocate power to vehicles connected to the grid intelligently. For this, the maximization of average SoC is considered a fitness function, and each PHEV can be connected to the grid once a day so that the maximum number of cars can be charged daily. To statistically compare the performance of these six algorithms, one-way ANOVA was used. Simulation and statistical results obtained by maximizing this highly non-linear objective function show that accelerated particle swarm optimization with Variant 5 achieved some improvements in terms of computational time and best fitness value. The APSO-5 solution has a considerable percentage increase compared with the solution of other variants of APSO for the four PHEV datasets considered. Moreover, after 30 trials, APSO 5 gives the highest possible fitness value among all the algorithms.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3