Estimating Breakup Frequencies in Industrial Emulsification Devices: The Challenge of Inferring Local Frequencies from Global Methods

Author:

Håkansson Andreas

Abstract

Experimental methods to study the breakup frequency in industrial devices are increasingly important. Since industrial production-scale devices are often inaccessible to single-drop experiments, breakup frequencies for these devices can only be studied with “global methods”; i.e., breakup frequency estimated from analyzing emulsification-experiment data. However, how much can be said about the local breakup frequencies (e.g., needed in modelling) from these global estimates? This question is discussed based on insights from a numerical validation procedure where set local frequencies are compared to global estimates. It is concluded that the global methods provide a valid estimate of local frequencies as long as the dissipation rate of turbulent kinetic energy is fairly homogenous throughout the device (although a residence-time-correction, suggested in this contribution, is needed as long as the flow is not uniform in the device). For the more realistic case of an inhomogeneous breakup frequency, the global estimate underestimates the local frequency (at the volume-averaged dissipation rate of turbulent kinetic energy). However, the relative error between local frequencies and global estimates is approximately constant when comparing between conditions. This suggest that the global methods are still valuable for studying how local breakup frequencies scale across operating conditions, geometries and fluid properties.

Funder

Vetenskapsrådet

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3