The Discovery and Characterization of a Potent DPP-IV Inhibitory Peptide from Oysters for the Treatment of Type 2 Diabetes Based on Computational and Experimental Studies

Author:

Chen Zhongqin123ORCID,Su Xiaojie12,Cao Wenhong123,Tan Mingtang123,Zhu Guoping23,Gao Jialong23,Zhou Longjian123ORCID

Affiliation:

1. Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China

2. Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China

3. Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China

Abstract

The inhibition of dipeptidyl peptidase-IV (DPP-IV) is a promising approach for regulating the blood glucose levels in patients with type 2 diabetes (T2D). Oysters, rich in functional peptides, contain peptides capable of inhibiting DPP-IV activity. This study aims to identify the hypoglycemic peptides from oysters and investigate their potential anti-T2D targets and mechanisms. This research utilized virtual screening for the peptide selection, followed by in vitro DPP-IV activity assays to validate the chosen peptide. Network pharmacology was employed to identify the potential targets, GO terms, and KEGG pathways. Molecular docking and molecular dynamics simulations were used to provide virtual confirmation. The virtual screening identified LRGFGNPPT as the most promising peptide among the screened oyster peptides. The in vitro studies confirmed its inhibitory effect on DPP-IV activity. Network pharmacology revealed that LRGFGNPPT exerts an anti-T2D effect through multiple targets and signaling pathways. The key hub targets are AKT1, ACE, and REN. Additionally, the molecular docking results showed that LRGFGNPPT exhibited a strong binding affinity with targets like AKT1, ACE, and REN, which was further confirmed by the molecular dynamics simulations showcasing a stable peptide–target interaction. This study highlights the potential of LRGFGNPPT as a natural anti-T2D peptide, providing valuable insights for potential future pharmaceutical or dietary interventions in T2D management.

Funder

Guangdong Basic and Applied Basic Research Foundation

the National Natural Science Foundation of China

the Zhanjiang Marine Youth Talent Innovation Project

the Science and Technology Plan Project of Zhanjiang City

the Program for scientific research start-up funds of Guangdong Ocean University

the Innovative Team Program of High Education of Guangdong Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3