Antibacterial and Immunosuppressive Effects of a Novel Marine Brown Alga-Derived Ester in Atopic Dermatitis

Author:

Kim Hyun Soo1ORCID,Ahn Jeong Won1ORCID,Ha Na Reum2,Damodar Kongara2ORCID,Jang Su Kil2,Yoo Yeong-Min1ORCID,Gyoung Young Soo2,Joo Seong Soo12ORCID

Affiliation:

1. College of Life Science, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung, Gangwon 25457, Republic of Korea

2. Huscion MAJIC R&D Center, 331 Pangyo-ro, Seongnam, Gyeonggi 13488, Republic of Korea

Abstract

Atopic dermatitis (AD) is a chronic skin condition that is characterized by dysregulated immune responses and a heightened risk of Staphylococcus aureus infections, necessitating the advancement of innovative therapeutic methods. This study explored the potential of (6Z,9Z,12Z,15Z)-(2R,3R,4R,5R)-2,3,4,5,6-pentahydroxyhexyl octadeca-6,9,12,15-tetraenoate (HSN-S1), a compound derived from the marine alga Hizikia fusiformis, which shows anti-inflammatory, antimicrobial, and immunomodulatory properties. HSN-S1 was isolated and characterized using advanced chromatographic and spectroscopic methods. Its efficacy was evaluated via in vitro assays with keratinocytes, macrophages, and T cells to assess cytokine suppression and its immunomodulatory effects; its antibacterial activity against S. aureus was quantified. The in vivo effectiveness was validated using a 2,4-dinitrochlorobenzene-induced AD mouse model that focused on skin pathology and cytokine modulation. HSN-S1 significantly reduced pro-inflammatory cytokine secretion, altered T-helper cell cytokine profiles, and showed strong antibacterial activity against S. aureus. In vivo, HSN-S1 alleviated AD-like symptoms in mice and reduced skin inflammation, transepidermal water loss, serum immunoglobulin-E levels, and Th2/Th17 cytokine outputs. These findings suggest HSN-S1 to be a promising marine-derived candidate for AD treatment, as it offers a dual-target approach that could overcome the limitations of existing therapies, hence warranting further clinical investigation.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3