Comparative Transcriptomic Analysis on the Effect of Sesamol on the Two-Stages Fermentation of Aurantiochytrium sp. for Enhancing DHA Accumulation

Author:

Yang Xuewei1,Wei Liyang1,Liang Shitong1,Wang Zongkang2,Li Shuangfei1

Affiliation:

1. Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China

2. Ecological Fertilizer Research Institute, Shenzhen Batian Ecological Engineering Co., Ltd., Shenzhen 518057, China

Abstract

Aurantiochytrium is a well-known long-chain polyunsaturated fatty acids (PUFAs) producer, especially docosahexaenoic acid (DHA). In order to reduce the cost or improve the productivity of DHA, many researchers are focusing on exploring the high-yield strain, reducing production costs, changing culture conditions, and other measures. In this study, DHA production was improved by a two-stage fermentation. In the first stage, efficient and cheap soybean powder was used instead of conventional peptone, and the optimization of fermentation conditions (optimal fermentation conditions: temperature 28.7 °C, salinity 10.7‰, nitrogen source concentration 1.01 g/L, and two-nitrogen ratio of yeast extract to soybean powder 2:1) based on response surface methodology resulted in a 1.68-fold increase in biomass concentration. In the second stage, the addition of 2.5 mM sesamol increased the production of fatty acid and DHA by 93.49% and 98.22%, respectively, as compared to the optimal culture condition with unadded sesamol. Transcriptome analyses revealed that the addition of sesamol resulted in the upregulation of some genes related to fatty acid synthesis and antioxidant enzymes in Aurantiochytrium. This research provides a low-cost and effective culture method for the commercial production of DHA by Aurantiochytrium sp.

Funder

the National Key Research and Development Programme

the National Key Research and Development Programme of China

the Natural Science Foundation of Guangdong Province

the Shenzhen Science and Technology Programme

Shenzhen Agricultural Development Special Funds (Fishery) Agricultural High-Tech Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3