Proactive Caching at the Edge Leveraging Influential User Detection in Cellular D2D Networks

Author:

Said Anwar,Shah Syed,Farooq Hasan,Mian Adnan,Imran Ali,Crowcroft Jon

Abstract

Caching close to users in a radio access network (RAN) has been identified as a promising method to reduce a backhaul traffic load and minimize latency in 5G and beyond. In this paper, we investigate a novel community detection inspired by a proactive caching scheme for device-to-device (D2D) enabled networks. The proposed scheme builds on the idea that content generated/accessed by influential users is more probable to become popular and thus can be exploited for pro-caching. We use a Clustering Coefficient based Genetic Algorithm (CC-GA) for community detection to discover a group of cellular users present in close vicinity. We then use an Eigenvector Centrality measure to identify the influential users with respect to the community structure, and the content associated to it is then used for pro-active caching using D2D communications. The numerical results show that, compared to reactive caching, where historically popular content is cached, depending on cache size, load and number of requests, up to 30% more users can be satisfied using a proposed scheme while achieving significant reduction in backhaul traffic load.

Publisher

MDPI AG

Subject

Computer Networks and Communications

Reference48 articles.

1. Ericsson Mobility Reporthttps://mypresswire.com/log/pm_files/file_31840.pdf

2. Device-to-device communication in 5G cellular networks

3. Massive MIMO for next generation wireless systems

4. An adaptive algorithm for mu-mimo using spatial channel model;Shah;Intern. J. Eng.,2016

5. Five disruptive technology directions for 5G

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3