Segmentation Differences of the Salt-Related Qiulitage Fold and Thrust Belt in the Kuqa Foreland Basin

Author:

Zhu Yingzhong1,Li Chuanxin1,Zhang Yuhang2,Zhao Yibo1,Gulifeire Tulujun1

Affiliation:

1. School of Energy Resources, China University of Geosciences, Beijing 100083, China

2. School of Earth Sciences and Engineering, Xi’an Shiyou University, Xi’an 710065, China

Abstract

The Qiulitage fold and thrust belt (QFTB) is situated in the Kuqa Depression, exhibiting spectacular salt structures with well-defined geometric and kinematic characteristics and thereby playing a significant role in advancing the study of salt structures worldwide. This research, based on regional geology, well logging, and newly acquired three-dimensional seismic data, applies principles of salt-related fault structures to interpret seismic data and restore structural equilibrium in the Qiulitage fold and thrust belt within the Kuqa Depression by conducting quantitative studies on structural geometry and kinematics. Results indicate clear differences in salt structures between the eastern and western segments of it, vertically divided into upper salt, salt layer, and lower salt and horizontally into four parts. The Dina segment features a single-row basement-involved thrust fault, the East QFTB segment displays detachment thrust faults involving cover layers, the Central QFTB segment exhibits detachment thrust faults involving multiple rows of cover layers, the leading edge forms structural wedges, and the West QFTB segment develops blind-thrust faults. During the deposition of the Kangcun formation, the eastern profile experiences an 18% shortening rate, 14% in the central part, and 9% in the western part. For the Kuqa formation, the eastern profile experiences a 10% shortening rate, 9% in the central part, and 3% in the western part, indicating more significant deformation in the east than in the west. Quantitative statistical analysis reveals that different types of detachments, paleogeomorphology, and northeast-directed compressive stress exert control over the Qiulitage fold-thrust belt.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3