Dynamics of Lagrangian Sensor Particles: The Effect of Non-Homogeneous Mass Distribution

Author:

Rautenbach Ryan1ORCID,Hofmann Sebastian1ORCID,Buntkiel Lukas2ORCID,Schäfer Jan2,Reinecke Sebastian Felix2ORCID,Hoffmann Marko1,Hampel Uwe23ORCID,Schlüter Michael1ORCID

Affiliation:

1. Institute of Multiphase Flows, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany

2. Institute of Fluid Dynamics, Experimental Thermal Fluid Dynamics, Helmholtz Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 0132 Dresden, Germany

3. Chair of Imaging Techniques in Energy and Process Engineering, Dresden University of Technology, 01069 Dresden, Germany

Abstract

The growing demand for bio-pharmaceuticals necessitates improved methods for the characterization of stirred tank reactors (STRs) and their mixing heterogeneities. Traditional Eulerian measurement approaches fall short, culminating in the use of Lagrangian Sensor Particles (LSPs) to map large-scale STRs and track the lifelines of microorganisms such as Chinese Hamster Ovary cells. This study investigates the hydrodynamic characteristics of LSPs, specifically examining the effects that the size and position of the Center of Mass (CoM) have on their flow-following capabilities. Two Lagrangian Particle (LP) designs are evaluated, one with the CoM and a Geometric Center aligned, and another with a shifted CoM. The experimental study is conducted in a rectangular vessel filled with deionized water featuring a stationary circular flow. Off-center LPs exhibit higher velocities, an increased number of floor contacts, and moreover, a less homogeneous particle probability of presence within the vessel compared to LPs with CoM and Geometric Center aligned. Lattice Boltzmann Large Eddy Simulations provide complementary undisturbed fluid velocity data for the calculation of the Stokes number St. Building upon these findings, differences in the Stokes number St between the two LP variants of ΔSt = 0.01 (25 mm LP) and ΔSt = 0.13 (40 mm LP) are calculated, highlighting the difference in flow behavior. Furthermore, this study offers a more representative calculation of particle response time approach, as the traditional Stokes number definition does not account for non-homogeneous particles, resulting in an alternative Stokes number (ΔStalt = 0.84 (25 mm LP) and ΔStalt = 2.72 (40 mm LP)). This study contributes to the improved characterization of STRs through the use of Lagrangian Sensor Particles. Results highlight the implications the internal mass distribution has on LSP design, offering crucial considerations for researchers in the field.

Funder

Deutsche Forschungsgemeinschaft

BMEL

Clean Water Technology Lab—A Helmholtz Innovation Lab

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3