Cell Line-Based Human Bladder Organoids with Bladder-like Self-Organization—A New Standardized Approach in Bladder Cancer Research

Author:

Berndt-Paetz Mandy1,Han Shanfu2,Weimann Annett1,Reinhold Annabell1,Nürnberger Sandra1,Neuhaus Jochen1ORCID

Affiliation:

1. Department of Urology, Research Laboratories, Leipzig University, 04103 Leipzig, Germany

2. Clinical Apartment, Cornerstone MedTech (Beijing) Limited, Beijing 100005, China

Abstract

Three-dimensional tumor models have gained significant importance in bladder cancer (BCa) research. Organoids consisting of different cell types better mimic solid tumors in terms of 3D architecture, proliferation, cell–cell interaction and drug responses. We developed four organoids from human BCa cell lines with fibroblasts and smooth muscle cells of the bladder, aiming to find models for BCa research. The organoids were characterized in terms of cytokeratins, vimentin, α-actin and KI67 by immunoreactivity. Further, we studied ligand-dependent activation of the Wnt/β-catenin pathway and investigated the responses to anti-tumor therapies. The organoids mimicked the structure of an inverse bladder wall, with outside urothelial cells and a core of supportive cells. The cytokeratin staining patterns and proliferation rate were in conjunction with the origins of the BCa cells. RT-112 even showed stratification of the epithelium. Treatment with Wnt10B led to increased β-catenin (active) levels in high-grade organoids, but not in low-grade BCa cells. Doxorubicin treatment resulted in clearly reduced viability (10–30% vs. untreated). In contrast, the effectivity of radiotherapy depended on the proliferation status of BCa cells. In conclusion, cell-line-based organoids can form bladder-like structures and reproduce in vivo features such as urothelial differentiation and stratification. Thus, they can be useful tools for functional studies in BCa and anti-cancer drug development.

Funder

Dr. Siegfried Krüger Stiftung Leipzig, Germany

Wissenschaftsstiftung Leipzig, Markkleeberg

German Research Foundation

China Scholarship Council

Open Access Publishing Fund of Leipzig University supported by the German Research Foundation

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3