β-Adrenoceptor Agonists Attenuate Thrombin-Induced Impairment of Human Lung Endothelial Cell Barrier Function and Protect the Lung Vascular Barrier during Resuscitation from Hemorrhagic Shock

Author:

McGee Michelle Y.1,Ogunsina Ololade1,Boshra Sadia N.12ORCID,Gao Xianlong1,Majetschak Matthias13

Affiliation:

1. Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA

2. Department of Chemistry, University of South Florida, Tampa, FL 33612, USA

3. Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, FL 33612, USA

Abstract

β-adrenoceptor (β-AR) agonists are known to antagonize thrombin-induced impairment (TII) of bovine and ovine lung endothelial barrier function. The effects of adrenoceptor agonists and other vasoactive agents on human lung microvascular endothelial cell (HULEC-5a) barrier function upon thrombin exposure have not been studied. Furthermore, it is unknown whether the in vitro effects of adrenoceptor agonists translate to lung protective effects in vivo. We observed that epinephrine, norepinephrine, and phenylephrine enhanced normal and prevented TII of HULEC-5a barrier function. Arginine vasopressin and angiotensin II were ineffective. α1B-, α2A/B-, and β1/2-ARs were detectable in HULEC-5a by RT-PCR. Propranolol but not doxazosin blocked the effects of all adrenoceptor agonists. Phenylephrine stimulated β2-AR-mediated Gαs activation with 13-fold lower potency than epinephrine. The EC50 to inhibit TII of HULEC-5a barrier function was 1.8 ± 1.9 nM for epinephrine and >100 nM for phenylephrine. After hemorrhagic shock and fluid resuscitation in rats, Evans blue extravasation into the lung increased threefold (p < 0.01 vs. sham). Single low-dose (1.8 μg/kg) epinephrine administration at the beginning of resuscitation had no effects on blood pressure and reduced Evans blue extravasation by 60% (p < 0.05 vs. vehicle). Our findings confirm the effects of β-adrenoceptor agonists in HULEC-5a and suggest that low-dose β-adrenoceptor agonist treatment protects lung vascular barrier function after traumatic hemorrhagic shock.

Funder

National Institutes of Health

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3