Using Machine Learning to Develop and Validate an In-Hospital Mortality Prediction Model for Patients with Suspected Sepsis

Author:

Chao Hsiao-Yun,Wu Chin-Chieh,Singh Avichandra,Shedd Andrew,Wolfshohl Jon,Chou Eric H.,Huang Yhu-CheringORCID,Chen Kuan-FuORCID

Abstract

Background: Early recognition of sepsis and the prediction of mortality in patients with infection are important. This multi-center, ED-based study aimed to develop and validate a 28-day mortality prediction model for patients with infection using various machine learning (ML) algorithms. Methods: Patients with acute infection requiring intravenous antibiotic treatment during the first 24 h of admission were prospectively recruited. Patient demographics, comorbidities, clinical signs and symptoms, laboratory test data, selected sepsis-related novel biomarkers, and 28-day mortality were collected and divided into training (70%) and testing (30%) datasets. Logistic regression and seven ML algorithms were used to develop the prediction models. The area under the receiver operating characteristic curve (AUROC) was used to compare different models. Results: A total of 555 patients were recruited with a full panel of biomarker tests. Among them, 18% fulfilled Sepsis-3 criteria, with a 28-day mortality rate of 8%. The wrapper algorithm selected 30 features, including disease severity scores, biochemical parameters, and conventional and few sepsis-related biomarkers. Random forest outperformed other ML models (AUROC: 0.96; 95% confidence interval: 0.93–0.98) and SOFA and early warning scores (AUROC: 0.64–0.84) in the prediction of 28-day mortality in patients with infection. Additionally, random forest remained the best-performing model, with an AUROC of 0.95 (95% CI: 0.91–0.98, p = 0.725) after removing five sepsis-related novel biomarkers. Conclusions: Our results demonstrated that ML models provide a more accurate prediction of 28-day mortality with an enhanced ability in dealing with multi-dimensional data than the logistic regression model.

Funder

Ministry of Science and Technology, Taiwan

Chang Gung Memorial Hospital in Taiwan

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3