Coarse-Grained Models of RNA Nanotubes for Large Time Scale Studies in Biomedical Applications

Author:

Badu Shyam,Prabhakar Sanjay,Melnik Roderick

Abstract

In order to describe the physical properties of large time scale biological systems, coarse-grained models play an increasingly important role. In this paper we develop Coarse-Grained (CG) models for RNA nanotubes and then, by using Molecular Dynamics (MD) simulation, we study their physical properties. Our exemplifications include RNA nanotubes of 40 nm long, equivalent to 10 RNA nanorings connected in series. The developed methodology is based on a coarse-grained representation of RNA nanotubes, where each coarse bead represents a group of atoms. By decreasing computation cost, this allows us to make computations feasible for realistic structures of interest. In particular, for the developed coarse-grained models with three bead approximations, we calculate the histograms for the bond angles and the dihedral angles. From the dihedral angle histograms, we analyze the characteristics of the links used to build the nanotubes. Furthermore, we also calculate the bead distances along the chains of RNA strands in the nanoclusters. The variations in these features with the size of the nanotube are discussed in detail. Finally, we present the results on the calculation of the root mean square deviations for a developed RNA nanotube to demonstrate the equilibration of the systems for drug delivery and other biomedical applications such as medical imaging and tissue engineering.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3