Ferroptosis in Cardiovascular Disease and Cardiomyopathies: Therapeutic Implications of Glutathione and Iron Chelating Agents

Author:

Dawi John1ORCID,Affa Scarlet2,Gonzalez Edgar1,Misakyan Yura1,Nikoghosyan David1,Hajjar Karim1,Kades Samuel1,Fardeheb Sabrina1,Mirzoyan Hayk3,Venketaraman Vishwanath1ORCID

Affiliation:

1. College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA

2. Department of Chemistry, Physics, and Engineering, Los Angeles Valley College, Valley Glen, CA 91401, USA

3. College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, USA

Abstract

This review explores ferroptosis, a form of regulated cell death reliant on iron-induced phospholipid peroxidation, in diverse physiological and pathological contexts, including neurodegenerative disorders, and ischemia-reperfusion. In the realm of cardiovascular diseases, it significantly contributes to cardiomyopathies, including dilated cardiomyopathy, hypertrophic cardiomyopathy, and restrictive cardiomyopathy. Ferroptosis involves intricate interactions within cellular iron metabolism, lipid peroxidation, and the balance between polyunsaturated and monounsaturated fatty acids. Molecularly, factors like p53 and NRF2 impact cellular susceptibility to ferroptosis under oxidative stress. Understanding ferroptosis is vital in cardiomyopathies, where cardiac myocytes heavily depend on aerobic respiration, with iron playing a pivotal role. Dysregulation of the antioxidant enzyme GPX4 is linked to cardiomyopathies, emphasizing its significance. Ferroptosis’s role in myocardial ischemia-reperfusion injury, exacerbated in diabetes, underscores its relevance in cardiovascular conditions. This review explores the connection between ferroptosis, the NRF2 pathway, and atherosclerosis, emphasizing their roles in protecting cells from oxidative stress and maintaining iron balance. It discusses the use of iron chelating agents in managing iron overload conditions, with associated benefits and challenges. Finally, it highlights the importance of exploring therapeutic strategies that enhance the glutathione (GSH) system and the potential of natural compounds like quercetin, terpenoids, and phenolic acids in reducing oxidative stress.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3