Development of Cellular Signaling Pathways by Bioceramic Heat Treatment (Sintering) in Osteoblast Cells

Author:

Jung Yoona1,Kim Jooseong23ORCID,Kim Sukyoung2,Chung Shin hye4ORCID,Wie Jinhong1

Affiliation:

1. Department of Physiology, Konkuk University School of Medicine, Chungju 27478, Republic of Korea

2. HudensBio Co., Ltd., 318 Cheomdanyeonsin-ro, Buk-gu, Gwangju 61088, Republic of Korea

3. Department of Biomedical Engineering, Yeungnam University, Daegu 42415, Republic of Korea

4. Dental Biomaterials Science, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea

Abstract

Bioceramics are calcium-phosphate-based materials used in medical and dental implants for replacing or repairing damaged bone tissues; however, the effect of bioceramic sintering on the intracellular signaling pathways remains unknown. In order to address this, we analyzed the impact of sintering on the cell signaling pathways of osteoblast cells using sintered and non-sintered hydroxyapatite (HA) and beta-tricalcium phosphate (β-TCP). X-ray diffraction indicated that only the morphology of HA was affected by sintering; however, the sintered bioceramics were found to have elevated the calcium concentrations in relation to the non-sintered variants. Both bioceramics inhibited the JNK signaling pathway; the sintered HA exhibited half the value of the non-sintered variant, while the sintered β-TCP rarely expressed a p-JNK value. The total Src and Raptor protein concentrations were unaffected by the sintering, while the p-Src concentrations were decreased. The p-EGFR signaling pathway was regulated by the non-sintered bioceramics, while the p-p38 concentrations were reduced by both the sintered β-TCP and HA. All of the bioceramics attenuated the total AKT concentrations, particularly the non-sintered HA, and the AKT phosphorylation concentration, except for the non-sintered β-TCP. Thus, the sintering of bioceramics affects several intracellular signaling pathways. These findings may elucidate the bioceramic function and expand their application scope as novel substrates in clinical applications.

Funder

Konkuk University

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3