Lightweight Visual Transformers Outperform Convolutional Neural Networks for Gram-Stained Image Classification: An Empirical Study

Author:

Kim Hee E.1ORCID,Maros Mate E.1ORCID,Miethke Thomas2ORCID,Kittel Maximilian3ORCID,Siegel Fabian1ORCID,Ganslandt Thomas4ORCID

Affiliation:

1. Department of Biomedical Informatics at the Center for Preventive Medicine and Digital Health (CPD), Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany

2. Institute of Medical Microbiology and Hygiene, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany

3. Institute for Clinical Chemistry, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany

4. Chair of Medical Informatics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany

Abstract

We aimed to automate Gram-stain analysis to speed up the detection of bacterial strains in patients suffering from infections. We performed comparative analyses of visual transformers (VT) using various configurations including model size (small vs. large), training epochs (1 vs. 100), and quantization schemes (tensor- or channel-wise) using float32 or int8 on publicly available (DIBaS, n = 660) and locally compiled (n = 8500) datasets. Six VT models (BEiT, DeiT, MobileViT, PoolFormer, Swin and ViT) were evaluated and compared to two convolutional neural networks (CNN), ResNet and ConvNeXT. The overall overview of performances including accuracy, inference time and model size was also visualized. Frames per second (FPS) of small models consistently surpassed their large counterparts by a factor of 1-2×. DeiT small was the fastest VT in int8 configuration (6.0 FPS). In conclusion, VTs consistently outperformed CNNs for Gram-stain classification in most settings even on smaller datasets.

Funder

German Ministry for Education and Research

Deutsche Forschungsgemeinschaft

Heidelberg University

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3