Immunological Phenotyping of Mice with a Point Mutation in Cdk4

Author:

Yabas Mehmet12,Hoyne Gerard F.134ORCID

Affiliation:

1. Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 0200, Australia

2. Department of Immunology, Faculty of Medicine, Malatya Turgut Ozal University, Malatya 44210, Türkiye

3. School of Health Sciences and Physiotherapy, Faculty of Medicine, Nursing, Midwifery and Health Sciences, University of Notre Dame Australia, Fremantle, WA 6959, Australia

4. Institute for Respiratory Health, QEII Medical Centre, Nedlands, WA 6009, Australia

Abstract

Cyclin-dependent kinases (CDKs) play a crucial role in regulation of the mammalian cell cycle. CDK4 and CDK6 control the G1/S restriction checkpoint through their ability to associate with cyclin D proteins in response to growth factor signals. CDK4 deficiency in mice gives rise to a range of endocrine-specific phenotypes including diabetes, infertility, dwarfism, and atrophy of the anterior pituitary. Although CDK6 deficiency can cause thymic atrophy due to a block in the double-negative (DN) to double-positive (DP) stage of T cell development, there are no overt defects in immune cell development reported for CDK4-deficient mice. Here, we examined the impact of a novel N-ethyl-N-nitrosourea-induced point mutation in the gene encoding CDK4 on immune cell development. Mutant mice (Cdk4wnch/wnch) showed normal development and differentiation of major immune cell subsets in the thymus and spleen. Moreover, T cells from Cdk4wnch/wnch mice exhibited normal cytokine production in response to in vitro stimulation. However, analysis of the mixed bone marrow chimeras revealed that Cdk4wnch/wnch-derived T cell subsets and NK cells are at a competitive disadvantage compared to Cdk4+/+-derived cells in the thymus and periphery of recipients. These results suggest a possible role for the CDK4wnch mutation in the development of some immune cells, which only becomes apparent when the Cdk4wnch/wnch mutant cells are in direct competition with wild-type immune cells in the mixed bone marrow chimera.

Funder

Juvenile Diabetes Research Foundation

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3