Role of Base Excision Repair in Innate Immune Cells and Its Relevance for Cancer Therapy

Author:

Zhao Shengyuan,Habib Samy L.,Senejani Alireza G.,Sebastian ManuORCID,Kidane Dawit

Abstract

Innate immunity is critical for immediate recognition and elimination of invading pathogens or defense against cancer cell growth. Dysregulation of innate immune systems is associated with the pathogenesis of different types of inflammatory diseases, including cancer. In addition, the maintenance of innate immune cells’ genomic integrity is crucial for the survival of all organisms. Oxidative stress generated from innate immune cells may cause self-inflicted DNA base lesions as well as DNA damage on others neighboring cells, including cancer cells. Oxidative DNA base damage is predominantly repaired by base excision repair (BER). BER process different types of DNA base lesions that are presented in cancer and innate immune cells to maintain genomic integrity. However, mutations in BER genes lead to impaired DNA repair function and cause insufficient genomic integrity. Moreover, several studies have implicated that accumulation of DNA damage leads to chromosomal instability that likely activates the innate immune signaling. Furthermore, dysregulation of BER factors in cancer cells modulate the infiltration of innate immune cells to the tumor microenvironment. In the current review, the role of BER in cancer and innate immune cells and its impact on innate immune signaling within the tumor microenvironment is summarized. This is a special issue that focuses on DNA damage and cancer therapy to demonstrate how BER inhibitor or aberrant repair modulates innate inflammatory response and impact immunotherapy approaches. Overall, the review provides substantial evidence to understand the impact of BER in innate immune response dynamics within the current immune-based therapeutic strategy.

Funder

National Cancer Institute

AGA-R. Robert and Sally Funderburg of America Gastroenterology Association

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Reference208 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3