Abstract
The activation of toll-like receptors (TLRs) in the central nervous system (CNS) can lead to neuroinflammation and contribute to many neurological disorders, including autoimmune diseases. Cell culture models are powerful tools for studying specific molecular and cellular mechanisms that contribute to these disease states and identifying potential therapeutics. However, most cell culture models have limitations in capturing biologically relevant phenomena, due in part to the non-inclusion of necessary cell types. Neurons, astrocytes, and microglia (critical cell types that play a role in neuroinflammation) all express at least a subset of TLRs. However, the response of each of these cell types to various TLR activation, along with their relative contribution to neuroinflammatory processes, is far from clear. In this study, we demonstrate the screening capabilities of a primary cortical cell tri-culture of neuron, astrocyte, and microglia from neonatal rats. Specifically, we compare the neuroinflammatory response of tri-cultures to that of primary neuron-astrocyte co-cultures to a suite of known TLR agonists. We demonstrate that microglia are required for observation of neurotoxic neuroinflammatory responses, such as increased cell death and apoptosis, in response to TLR2, 3, 4, and 7/8 activation. Additionally, we show that following TLR3 agonist treatment, microglia and astrocytes play opposing roles in the neuroinflammatory response, and that the observed response is dictated by the degree of TLR3 activation. Overall, we demonstrate that microglia play a significant role in the neuroinflammatory response to TLR activation in vitro and, hence, the tri-culture has the potential to serve as a screening platform that better replicates the in vivo responses.
Funder
National Institutes of Health
Subject
General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)