Using Constrained Square-Root Cubature Kalman Filter for Quantifying the Severity of Epileptic Activities in Mice

Author:

Huang Chih-HsuORCID,Wang Peng-Hsiang,Ju Ming-Shaung,Lin Chou-Ching K.ORCID

Abstract

(1) Background: Quantification of severity of epileptic activities, especially during electrical stimulation, is an unmet need for seizure control and evaluation of therapeutic efficacy. In this study, a parameter ratio derived from constrained square-root cubature Kalman filter (CSCKF) was formulated to quantify the excitability of local neural network and compared with three commonly used indicators, namely, band power, Teager energy operator, and sample entropy, to objectively determine their effectiveness in quantifying the severity of epileptiform discharges in mice. (2) Methods: A set of one normal and four types of epileptic EEGs was generated by a mathematical model. EEG data of epileptiform discharges during two types of electrical stimulation were recorded in 20 mice. Then, EEG segments of 5 s in length before, during and after the real and sham stimulation were collected. Both simulated and experimental data were used to compare the consistency and differences among the performance indicators. (3) Results: For the experimental data, the results of the four indicators were inconsistent during both types of electrical stimulation, although there was a trend that seizure severity changed with the indicators. For the simulated data, when the simulated EEG segments were used, the results of all four indicators were similar; however, this trend did not match the trend of excitability of the model network. In the model output which retained the DC component, except for the CSCKF parameter ratio, the results of the other three indicators were almost identical to those using the simulated EEG. For CSCKF, the parameter ratio faithfully reflected the excitability of the neural network. (4) Conclusion: For common EEG, CSCKF did not outperform other commonly used performance indicators. However, for EEG with a preserved DC component, CSCKF had the potential to quantify the excitability of the neural network and the associated severity of epileptiform discharges.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3