Green Synthesized Silver Nanoparticle-Loaded Liposome-Based Nanoarchitectonics for Cancer Management: In Vitro Drug Release Analysis

Author:

Jayachandran Priyanka,Ilango Suganya,Suseela Vivekananthan,Nirmaladevi Ramalingam,Shaik Mohammed RafiORCID,Khan MujeebORCID,Khan MerajuddinORCID,Shaik Baji

Abstract

Silver nanoparticles act as antitumor agents because of their antiproliferative and apoptosis-inducing properties. The present study aims to develop silver nanoparticle-loaded liposomes for the effective management of cancer. Silver nanoparticle-encapsulated liposomes were prepared using the thin-film hydration method coupled with sonication. The prepared liposomes were characterized by DLS (Dynamic Light Scattering analysis), FESEM (Field Emission Scanning Electron Microscope), and FTIR (Fourier Transform Infrared spectroscopy). The in vitro drug release profile of the silver nanoparticle-loaded liposomes was carried out using the dialysis bag method and the drug release profile was validated using various mathematical models. A high encapsulation efficiency of silver nanoparticle-loaded liposome was observed (82.25%). A particle size and polydispersity index of 172.1 nm and 0.381, respectively, and the zeta potential of −21.5 mV were recorded. FESEM analysis revealed spherical-shaped nanoparticles in the size range of 80–97 nm. The in vitro drug release profile of the silver nanoparticle-loaded liposomes was carried out using the dialysis bag method in three different pHs: pH 5.5, pH 6.8, and pH 7.4. A high silver nanoparticle release was observed in pH 5.5 which corresponds to the mature endosomes of tumor cells; 73.32 ± 0.68% nanoparticle was released at 72 h in pH 5.5. Among the various mathematical models analyzed, the Higuchi model was the best-fitted model as there is the highest value of the correlation coefficient which confirms that the drug release follows the diffusion-controlled process. From the Korsmeyer–Peppas model, it was confirmed that the drug release is based on anomalous non-Fickian diffusion. The results indicate that the silver nanoparticle-loaded liposomes can be used as an efficient drug delivery carrier to target cancer cells of various types.

Funder

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Reference69 articles.

1. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries;Bray;CA: A Cancer J. Clin.,2018

2. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries;Sung;CA: A Cancer J. Clin.,2021

3. Review of cancer from perspective of molecular;Hassanpour;J. Cancer Res. Pract.,2017

4. Apoptosis inducing ability of silver decorated highly reduced graphene oxide nanocomposites in A549 lung cancer;Khan;Int. J. Nanomed.,2016

5. Squamous cell cancers: A unified perspective on biology and genetics;Dotto;Cancer Cell,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3