S-Nitroso Human Serum Albumin Enhances Left Ventricle Hemodynamic Performance and Reduces Myocardial Damage after Local Ischemia–Reperfusion Injury

Author:

Linardi Daniele1ORCID,Hallström Seth23,Luciani Giovanni Battista1ORCID,Rungatscher Alessio1

Affiliation:

1. Cardiac Surgery Department, University of Verona, 37129 Verona, Italy

2. Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria

3. Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090 Vienna, Austria

Abstract

Endothelial nitric oxide (NO) production is crucial in maintaining vascular homeostasis. However, in the context of ischemia–reperfusion (I/R) injury, uncoupled endothelial nitric oxide synthase (eNOS) can exacerbate reactive oxygen species (ROS) generation. Supplementation with S-nitroso human serum albumin (S-NO-HSA) offers a potential solution by mitigating eNOS uncoupling, thereby enhancing NO bioavailability. In a study conducted at the University of Verona, male rats underwent thoracotomy followed by 30 min left anterior descendant coronary (LAD) occlusion and subsequent reperfusion. Hemodynamic parameters were meticulously assessed using a conductance catheter inserted via the carotid artery. The rats were stratified into two main groups based on reperfusion duration and the timing of drug infusion, with the effects of S-NO-HSA evaluated after 2 or 24 h. Remarkably, intravenous administration of S-NO-HSA, initiated before or during ischemia, exhibited notable benefits. It significantly improved left ventricular function, safeguarded energetic substrates such as phosphocreatine and ATP, and sustained glutathione levels akin to basal conditions, indicative of diminished oxidative stress. The data from this study strongly suggest a protective role for S-NO-HSA in mitigating I/R injury induced by LAD artery occlusion, a phenomenon observed at both 2 and 24 h post-reperfusion. These findings underscore the promising therapeutic potential of NO supplementation in alleviating myocardial damage subsequent to ischemic insult.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3