Estimating Carbon Dioxide (CO2) Emissions from Reservoirs Using Artificial Neural Networks

Author:

Chen Zhonghan,Ye Xiaoqian,Huang Ping

Abstract

Freshwater reservoirs are considered as the source of atmospheric greenhouse gas (GHG), but more than 96% of global reservoirs have never been monitored. Compared to the difficulty and high cost of field measurements, statistical models are a better choice to simulate the carbon emissions from reservoirs. In this study, two types of Artificial Neural Networks (ANNs), Back Propagation Neural Network (BPNN) and Generalized Regression Neural Network (GRNN), were used to predict carbon dioxide (CO2) flux emissions from reservoirs based on the published data. Input variables, which were latitude, age, the potential net primary productivity, and mean depth, were selected by Spearman correlation analysis, and then the rationality of these inputs was proved by sensitivity analysis. Besides this, a Multiple Non-Linear Regression (MNLR) and a Multiple Linear Regression (MLR) were used for comparison with ANNs. The performance of models was assessed by statistical metrics both in training and testing phases. The results indicated that ANNs gave more accurate results than regression models and GRNN provided the best performance. With the help of this GRNN, the total CO2 emitted by global reservoirs was estimated and possible CO2 flux emissions from a planned reservoir was assessed, which illustrated the potential application of GRNN.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference47 articles.

1. Are hydroelectric reservoirs significant sources of greenhouse gases?;Rudd;Ambio,1993

2. Greenhouse Gas Emissions-Fluxes and Processes: Hydroelectric Reservoirs and Natural Environments;Tremblay,2005

3. The net carbon footprint of a newly created boreal hydroelectric reservoir

4. Greenhouse Gas Emissions from Boreal Reservoirs in Manitoba and Québec, Canada, Measured with Automated Systems

5. Variability of carbon dioxide flux from tropical (Cerrado) hydroelectric reservoirs

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3