Biodegradable Carrageenan-Based Force Sensor: An Experimental Approach

Author:

Žaimis Uldis1ORCID,Petronienė Jūratė Jolanta2,Dzedzickis Andrius2ORCID,Bučinskas Vytautas2ORCID

Affiliation:

1. Institute of Science and Innovative Technology, Liepaja University, 3401 Liepaja, Latvia

2. Department of Mechatronics, Robotics, and Digital Manufacturing, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania

Abstract

The development of low-cost biodegradable pressure or force sensors based on a carrageenan and iron (III) oxide mix is a promising way to foster the spread of green technologies in sensing applications. The proposed materials are inexpensive and abundant and are available in large quantities in nature. This paper presents the development and experimental study of carrageenan and iron (III)-oxide-based piezoresistive sensor prototypes and provides their main characteristics. The results show that glycerol is required to ensure the elasticity of the material and preserve the material from environmental impact. The composition of the carrageenan-based material containing 1.8% Fe2O3 and 18% glycerol is suitable for measuring the load in the range from 0 N to 500 N with a sensitivity of 0.355 kΩ/N when the active surface area of the sensor is 100 mm2. Developed sensors in the form of flexible film have square resistance dependence to the force/pressure, and due to the soft original material, they face the hysteresis effect and some plastic deformation effect in the initial use stages. This paper contains extensive reference analysis and found a firm background for a new sensor request. The research covers the electric and mechanical properties of the developed sensor and possible future applications.

Funder

Lithuanian Research Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3