Nonenzymatic Browning of Amorphous Maltose/Whey Protein Isolates Matrix: Effects of Water Sorption and Molecular Mobility

Author:

Wu Yaowen,Ye Haoxuan,Fan FanghuiORCID

Abstract

Nonenzymatic browning (NEB) reactions often affect the nutritional quality and safety properties of amorphous food solids. Developing a proper approach to control the NEB reaction has been of particular interest in the food industry. An NEB reaction in an amorphous maltose/Whey protein isolates (WPI) matrix containing L-lysine and D-xylose as reactants were studied at ambient temperatures aw ≤ 0.44 and 45~65 °C. The results indicated that the presence of NEB reactants barely disturbed the water sorption behavior of the matrix. The Guggenheim–Anderson–de Boer (GAB) constants and Qst values of the studied samples were affected by storage conditions as the migration of sorbed water among monolayers occurred. The rate of color changes and 5-hydoxymethylfurfural (5-HMF) accumulation on the matrix were accelerated at high ambient temperatures aw, reflecting the extent of NEB reaction increases. Since the strength concept (S) could give a measure of molecular mobility, the extent of the NEB reaction was governed by the molecular mobility of the matrix as the activation energy (Ea) of 5-HMF production minimized at solids with high S values. We found that the S concept had a considerable potential usage in controlling the NEB reaction on amorphous sugar–protein solids. This data set has practical significance in the comprehensive understanding of manipulating the diffusion-limited chemical reactions on low-moisture food solids.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

High-Level Talents Start-Up Funding of Shenzhen

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3