Application of Fourier Transform Infrared (FT-IR) Spectroscopy, Multispectral Imaging (MSI) and Electronic Nose (E-Nose) for the Rapid Evaluation of the Microbiological Quality of Gilthead Sea Bream Fillets

Author:

Govari Maria,Tryfinopoulou PaschalitsaORCID,Panagou Efstathios Z.ORCID,Nychas George-John E.ORCID

Abstract

The potential of Fourier transform infrared (FT-IR) spectroscopy, multispectral imaging (MSI), and electronic nose (E-nose) was explored in order to determine the microbiological quality of gilthead sea bream (Sparus aurata) fillets. Fish fillets were maintained at four temperatures (0, 4, 8, and 12 °C) under aerobic conditions and modified atmosphere packaging (MAP) (33% CO2, 19% O2, 48% N2) for up to 330 and 773 h, respectively, for the determination of the population of total viable counts (TVC). In parallel, spectral data were acquired by means of FT-IR and MSI techniques, whereas the volatile profile of the samples was monitored using an E-nose. Thereafter, the collected data were correlated to microbiological counts to estimate the TVC during fish fillet storage. The obtained results demonstrated that the partial least squares regression (PLS-R) models developed on FT-IR data provided satisfactory performance in the estimation of TVC for both aerobic and MAP conditions, with coefficients of determination (R2) for calibration of 0.98 and 0.94, and root mean squared error of calibration (RMSEC) values of 0.43 and 0.87 log CFU/g, respectively. However, the performance of the PLS-R models developed on MSI data was less accurate with R2 values of 0.79 and 0.77, and RMSEC values of 0.78 and 0.72 for aerobic and MAP storage, respectively. Finally, the least satisfactory performance was observed for the E-nose with the lowest R2 (0.34 and 0.17) and the highest RMSEC (1.77 and 1.43 log CFU/g) values for aerobic and MAP conditions, respectively. The results of this work confirm the effectiveness of FT-IR spectroscopy for the rapid evaluation of the microbiological quality of gilthead sea bream fillets.

Funder

European Union, European Maritime and Fisheries Fund

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Reference41 articles.

1. A comprehensive review on freshness of fish and assessment: Analytical methods and recent innovations

2. The State of World Fisheries and Aquaculture 2020. Sustainability in Action. Rome https://www.fao.org/documents/card/en/c/ca9229en

3. The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals. Rome https://www.fao.org/3/i9540en/i9540en.pdf

4. Eurostat, 2019. Agriculture, Forestry and Fishery Statistics, 2019 Edition. Publications Office of the European Union, Luxemburg https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=fish_aq2a&lang=en

5. Shelf life extension of whole Norway lobster Nephrops norvegicus using modified atmosphere packaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3