Petrographic Characteristics of Sandstones as a Basis to Evaluate Their Suitability in Construction and Energy Storage Applications. A Case Study from Klepa Nafpaktias (Central Western Greece)

Author:

Petrounias PetrosORCID,Giannakopoulou Panagiota P.ORCID,Rogkala AikateriniORCID,Kalpogiannaki Maria,Koutsovitis PetrosORCID,Damoulianou Maria-Elli,Koukouzas Nikolaos

Abstract

This study investigates how the petrographic features of Klepa Nafpaktias sandstones affect their behavior in construction applications such as concrete, in environmental applications such as energy storage as well as whether they are suitable for the above uses. For achieving this goal, sandstones (ten samples) were collected in order to study their petrographic characteristics using petrographic microscope and GIS software, as well as their basic physical, mechanical and physicochemical properties were also examined. Concrete specimens (C25/30) were made according to international standards including the investigated aggregate rocks in various grain sizes. Various sandstones were tested and classified in three district groups according to their physicomechanical features as well as to their petrographic and microtopographic characteristics. Concrete strength’s results determined the samples into three groups which are in accordance with their initial classification which was relative to their grain size (coarse to fine-grained). As the grain size decreases their physicomechanical and physicochemical properties get better resulting in higher concrete strength values (25 to 32 MPa). Furthermore, the proposed ratio C/A (crystals/mm2) seems to influence the aggregate properties which constitute critical factors for the final concrete strength, presenting the more fine-grained sandstones as the most suitable for concrete aggregates. Concerning the use of Klepa Nafpaktias sandstones as potential energy reservoirs, the studied sandstones presented as suitable for CO2 storage according to their physicomechanical characteristics.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference79 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3