Abstract
The aim of this survey is to review some recent developments in devising efficient preconditioners for sequences of symmetric positive definite (SPD) linear systems A k x k = b k , k = 1 , … arising in many scientific applications, such as discretization of transient Partial Differential Equations (PDEs), solution of eigenvalue problems, (Inexact) Newton methods applied to nonlinear systems, rational Krylov methods for computing a function of a matrix. In this paper, we will analyze a number of techniques of updating a given initial preconditioner by a low-rank matrix with the aim of improving the clustering of eigenvalues around 1, in order to speed-up the convergence of the Preconditioned Conjugate Gradient (PCG) method. We will also review some techniques to efficiently approximate the linearly independent vectors which constitute the low-rank corrections and whose choice is crucial for the effectiveness of the approach. Numerical results on real-life applications show that the performance of a given iterative solver can be very much enhanced by the use of low-rank updates.
Subject
Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献