First-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Critical Points in Coupled Nonlinear Systems. I: Mathematical Framework

Author:

Cacuci Dan GabrielORCID

Abstract

This work presents the novel first-order comprehensive adjoint sensitivity analysis methodology for critical points (1st-CASAM-CP), which enables the exact and efficient computation of the first-order sensitivities of responses defined at critical points (maxima, minima, saddle points) of coupled nonlinear models of physical systems characterized by imprecisely known parameters underlying the models, boundaries, and interfaces between the coupled systems. Responses defined at critical points are important in many applications, including system optimization, safety analyses and licensing. For the design and licensing of nuclear reactors, such essentially important responses include the maximum temperatures of the fuel and cladding in hot channels. The 1st-CASAM-CP presented in this work makes it possible to determine, using a single large-scale “adjoint” computation, the first-order sensitivities of the magnitude of a response defined at a critical point of a function in the phase-space of the systems’ independent variables. In addition, the 1st-CASAM-CP enables the computation of the sensitivities of the location in phase-space of the critical point at which the respective response is located: one “adjoint” computation is required for each component of the respective critical point in the phase-space of independent variables. By enabling the exact and efficient computation of the sensitivities of responses and of their critical locations to imprecisely known model parameters, boundaries, and interfaces, the 1st-CASAM-CP significantly extends the practicality of analyzing crucially important responses for large-scale systems involving many uncertain parameters, interfaces, and boundaries.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Reference18 articles.

1. Sensitivity theory for nonlinear systems. I. Nonlinear functional analysis approach

2. Sensitivity and Uncertainty Analysis: Theory;Cacuci,2003

3. Sensitivity and Uncertainty Analysis: Applications to Large Scale Systems;Cacuci,2005

4. Second-order adjoint sensitivity analysis methodology (2nd-ASAM) for computing exactly and efficiently first- and second-order sensitivities in large-scale linear systems: I. Computational methodology

5. The Second-Order Adjoint Sensitivity Analysis Methodology;Cacuci,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3