Establishment and Validation of an Integrated Microfluidic Step Emulsification Chip Supporting Droplet Digital Nucleic Acid Analysis

Author:

Luo Gangyin12,Zhang Ying3,Wang Shun1,Lv Xinbei4,Yang Tianhang1,Wang Jinxian12

Affiliation:

1. Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China

2. School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China

3. JiHua Laboratory, Foshan 528251, China

4. Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao 266000, China

Abstract

Uniform and stable droplet generation is critical for accurate and efficient digital nucleic acid analysis (dNAA). In this study, an integrated microfluidic step emulsification device with wide-range droplet generation capability, small device dimensions, convenient fabrication strategy, low contamination and high robustness was developed. A tree-shaped droplet generation nozzle distribution design was proposed to increase the uniformity of droplet generation by equating flow rates, and the flow field in the design was numerically simulated. Theoretical analysis and comparative experiments on droplet size were performed regarding the influences of nozzle dimensions and surface properties. With incubation and hydrophobic reagent treatment, droplets as small as 73.1 μm were generated with multiplex nozzles of 18 μm (h) × 80 μm (w). The droplets were then collected into a standard PCR tube and an on-chip monolayer droplet collection chamber, without manual transfer and sample contamination. The oil-to-sample volume ratio in the PCR tube was recorded during collection. In the end, the droplets generated and collected using the microfluidic device proved to be stable and uniform for nucleic acid amplification and detection. This study provides reliable characteristic information for the design and fabrication of a micro-droplet generation device, and represents a promising approach for the realization of a three-in-one dNAA device under a step emulsification method.

Funder

China Postdoctoral Science Foundation

Suzhou Pilot Project of Basic Research

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3