Compact Back-End Electronics with Temperature Compensation and Efficient Data Management for In Situ SiPM-Based Radiation Detection

Author:

Dixon Nile E. J.1ORCID,Monk Stephen D.1ORCID,Graham James2ORCID,Cheneler David1ORCID

Affiliation:

1. Engineering Department, Lancaster University, Lancaster LA1 4YW, UK

2. Central Laboratory, National Nuclear Laboratory Ltd., Warrington WA3 6AE, UK

Abstract

A compact back-end interface for silicon photomultipliers (SiPMs) implementing Zener diode-based temperature compensation has been developed for the remote detection of beta and gamma radiation. Remote detection is facilitated by the development of an efficient data management system utilising MySQL database storage for recording periodic spectra data for wireless access over a private Wi-Fi network. A trapezoidal peak shaping algorithm has been implemented on an FPGA for the continuous conversation of pulses from the SiPM, signifying the detection of a radiological particle, into spectra. This system has been designed to fit within a 46 mm cylindrical diameter for in situ characterization, and can be attached to one or more SiPMs used in conjunction with a range of scintillators. LED blink tests have been used to optimise the trapezoidal shaper coefficients to maximise the resolution of the recorded spectra. Experiments with an array of SiPMs integrated with a NaI(Tl) scintillator exposed to sealed sources of Co-60, Cs-137, Na-22 and Am-241 have shown that the detector achieves a peak efficiency of 27.09 ± 0.13% for a gamma peak at 59.54 keV produced by Am-241, and a minimum energy resolution (Delta E/E) of 4.27 ± 1.16% for the 1332.5 keV gamma peak from Co-60.

Funder

EPSRC iCASE

NDA PhD bursary scheme

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference30 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3