Evaluation of SAR and Optical Data for Flood Delineation Using Supervised and Unsupervised Classification

Author:

Foroughnia FatemehORCID,Alfieri Silvia Maria,Menenti MassimoORCID,Lindenbergh RoderikORCID

Abstract

Precise and accurate delineation of flooding areas with synthetic aperture radar (SAR) and multi-spectral (MS) data is challenging because flooded areas are inherently heterogeneous as emergent vegetation (EV) and turbid water (TW) are common. We addressed these challenges by developing and applying a new stepwise sequence of unsupervised and supervised classification methods using both SAR and MS data. The MS and SAR signatures of land and water targets in the study area were evaluated prior to the classification to identify the land and water classes that could be delineated. The delineation based on a simple thresholding method provided a satisfactory estimate of the total flooded area but did not perform well on heterogeneous surface water. To deal with the heterogeneity and fragmentation of water patches, a new unsupervised classification approach based on a combination of thresholding and segmentation (CThS) was developed. Since sandy areas and emergent vegetation could not be classified by the SAR-based unsupervised methods, supervised random forest (RF) classification was applied to a time series of SAR and co-event MS data, both combined and separated. The new stepwise approach was tested for determining the flood extent of two events in Italy. The results showed that all the classification methods applied to MS data outperformed the ones applied to SAR data. Although the supervised RF classification may lead to better accuracies, the CThS (unsupervised) method achieved precision and accuracy comparable to the RF, making it more appropriate for rapid flood mapping due to its ease of implementation.

Funder

Horizon 2020

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3