Determining the Dose–Response Curve of Exoelectrogens: A Microscale Microbial Fuel Cell Biosensor for Water Toxicity Monitoring

Author:

Fei Sitao,Ren Hao

Abstract

Nowadays, the development of real-time water quality monitoring sensors is critical. However, traditional water monitoring technologies, such as enzyme-linked immunosorbent assay (ELISA), liquid chromatography, mass spectroscopy, luminescence screening, surface plasma resonance (SPR), and analysis of living bioindicators, are either time consuming or require expensive equipment and special laboratories. Because of the low cost, self-sustainability, direct current output and real-time response, microbial fuel cells (MFCs) have been implemented as biosensors for water toxicity monitoring. In this paper, we report a microscale MFC biosensor to study the dose–response curve of exoelectrogen to toxic compounds in water. The microscale MFC biosensor has an anode chamber volume of 200 μL, which requires less sample consumption for water toxicity monitoring compared with macroscale or mesoscale MFC biosensors. For the first time, the MFC biosensor is exposed to a large formaldehyde concentration range of more than 3 orders of magnitudes, from a low concentration of 1 × 10−6 g/L to a high concentration of 3 × 10−3 g/L in water, while prior studies investigated limited formaldehyde concentration ranges, such as a small concentration range of 1 × 10−4 g/L to 2 × 10−3 g/L or only one high concentration of 0.1 g/L. As a result, for the first time, a sigmoid dose–response relationship of normalized dose–response versus formaldehyde concentration in water is observed, in agreement with traditional toxicology dose–response curve obtained by other measurement techniques. The biosensor has potential applications in determining dose–response curves for toxic compounds and detecting toxic compounds in water.

Funder

National Natural Science Foundation of China

Yangfan Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference47 articles.

1. Global wastewater and sludge production, treatment and use;Mateo-Sagasta,2015

2. More People, More Food, Worse Water? A Global Review of Water Pollution from Agriculture;Mateo-Sagasta,2018

3. Global, regional, and country level need for data on wastewater generation, treatment, and use

4. The United Nations World Water Development Report, 2017: Wastewater: The Untapped Resource;Ryder,2017

5. Nanosensors for water quality monitoring

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3