A Nonparametric Stochastic Approach for Disaggregation of Daily to Hourly Rainfall Using 3-Day Rainfall Patterns

Author:

Park HeeseongORCID,Chung GunhuiORCID

Abstract

As infrastructure and populations are highly condensed in megacities, urban flood management has become a significant issue because of the potentially severe loss of lives and properties. In the megacities, rainfall from the catchment must be discharged throughout the stormwater pipe networks of which the travel time is less than one hour because of the high impervious rate. For a more accurate calculation of runoff from the urban catchment, hourly or even sub-hourly (minute) rainfall data must be applied. However, the available data often fail to meet the hydrologic system requirements. Many studies have been conducted to disaggregate time-series data while preserving distributional statistics from observed data. The K-nearest neighbor resampling (KNNR) method is a useful application of the nonparametric disaggregation technique. However, it is not easy to apply in the disaggregation of daily rainfall data into hourly while preserving statistical properties and boundary continuity. Therefore, in this study, three-day rainfall patterns were proposed to improve reproducible ability of statistics. Disaggregated rainfall was resampled only from a group having the same three-day rainfall patterns. To show the applicability of the proposed disaggregation method, probability distribution and L-moment statistics were compared. The proposed KNNR method with three-day rainfall patterns reproduced better the characteristics of rainfall event such as event duration, inter-event time, and toral amount of rainfall event. To calculate runoff from urban catchment, rainfall event is more important than hourly rainfall depth itself. Therefore, the proposed stochastic disaggregation method is useful to hydrologic analysis, particularly in rainfall disaggregation.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3