A Secure Mutual Batch Authentication Scheme for Patient Data Privacy Preserving in WBAN

Author:

Konan MartinORCID,Wang Wenyong

Abstract

The current advances in cloud-based services have significantly enhanced individual satisfaction in numerous modern life areas. Particularly, the recent spectacular innovations in the wireless body area networks (WBAN) domain have made e-Care services rise as a promising application field, which definitely improves the quality of the medical system. However, the forwarded data from the limited connectivity range of WBAN via a smart device (e.g., smartphone) to the application provider (AP) should be secured from an unapproved access and alteration (attacker) that could prompt catastrophic consequences. Therefore, several schemes have been proposed to guarantee data integrity and privacy during their transmission between the client/controller (C) and the AP. Thereby, numerous effective cryptosystem solutions based on a bilinear pairing approach are available in the literature to address the mentioned security issues. Unfortunately, the related solution presents security shortcomings, where AP can with ease impersonate a given C. Hence, this existing scheme cannot fully guarantee C’s data privacy and integrity. Therefore, we propose our contribution to address this data security issue (impersonation) through a secured and efficient remote batch authentication scheme that genuinely ascertains the identity of C and AP. Practically, the proposed cryptosystem is based on an efficient combination of elliptical curve cryptography (ECC) and bilinear pairing schemes. Furthermore, our proposed solution reduces the communication and computational costs by providing an efficient data aggregation and batch authentication for limited device’s resources in WBAN. These additional features (data aggregation and batch authentication) are the core improvements of our scheme that have great merit for limited energy environments like WBAN.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3