SiO2/SiC Nanowire Surfaces as a Candidate Biomaterial for Bone Regeneration

Author:

Ghezzi Benedetta12ORCID,Attolini Giovanni2,Bosi Matteo2ORCID,Negri Marco2,Lagonegro Paola3,Rotonda Pasquale M.4,Cornelissen Christine4,Macaluso Guido Maria12ORCID,Lumetti Simone12

Affiliation:

1. Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Via Gramsci 14, 43123 Parma, Italy

2. IMEM-CNR, Parco Area delle Scienze 37A, 43124 Parma, Italy

3. CNR-SCITEC, Via A. Corti 12, 20133 Milano, Italy

4. Lintes Research Laboratory, Via Isola 2, 64010 Colonnella, Italy

Abstract

Tissue engineering (TE) and nanomedicine require devices with hydrophilic surfaces to better interact with the biological environment. This work presents a study on the wettability of cubic silicon-carbide-based (SiC) surfaces. We developed four cubic silicon-carbide-based epitaxial layers and three nanowire (NW) substrates. Sample morphologies were analyzed, and their wettabilities were quantified before and after a hydrogen plasma treatment to remove impurities due to growth residues and enhance hydrophilicity. Moreover, sample biocompatibility has been assessed with regard to L929 cells. Our results showed that core–shell nanowires (SiO2/SiC NWs), with and without hydrogen plasma treatment, are the most suitable candidate material for biological applications due to their high wettability that is not influenced by specific treatments. Biological tests underlined the non-toxicity of the developed biomaterials with regard to murine fibroblasts, and the proliferation assay highlighted the efficacy of all the surfaces with regard to murine osteoblasts. In conclusion, SiO2/SiC NWs offer a suitable substrate to develop platforms and membranes useful for biomedical applications in tissue engineering due to their peculiar characteristics.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3