Enhancing the Structural, Optical, Thermal, and Electrical Properties of PVA Filled with Mixed Nanoparticles (TiO2/Cu)

Author:

Al-Hakimi Ahmed12ORCID,Asnag G.3,Alminderej Fahad1,Alhagri Ibrahim12ORCID,Al-Hazmy Sadeq1,Qahtan Talal4

Affiliation:

1. Department of Chemistry, College of Sciences, Qassim University, Qassim, Buraidah 51452, Saudi Arabia

2. Department of Chemistry, Faculty of Sciences, Ibb University, Ibb 70270, Yemen

3. Department of Optometry and Visual Science, College of Medical Sciences, Al-Razi University, Sana’a 31220, Yemen

4. Physics Department, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

Abstract

In this work, new samples of PVA-TiO2/Cu nanocomposites were prepared via the casting method. The prepared samples were examined using different analytical methods. An XRD analysis showed the semi-crystalline nature of the PVA polymer, as well as showing a decrease in the degree of the crystallinity of the PVA structure as a result of the addition of the mixed nanoparticles. TEM images indicate the spherical shape of the Cu NPs, with a size ranging from 2 to 22 nm, and the rectangular shape of the TiO2 NPs, with a size ranging from 5 to 25 nm. It was evident via FTIR measurements that there were interactions between the functional groups of the PVA and the TiO2/Cu NPs. The optical properties of the PVA nanocomposites were improved with an increase in the content of the TiO2/Cu nanoparticles, as shown via a UV/Vis analysis. DSC curves showed an improvement in the thermal stability of the PVA-TiO2/Cu nanocomposites after the embedding of the TiO2/Cu nanoparticles. It was evident using impedance spectroscopy that the AC conductivity was improved by adding the TiO2 and Cu nanoparticles to the polymeric matrix. The maximum AC conductivity was found at 1.60 wt.% of TiO2/Cu nanoparticles in the PVA polymer, and this was 13.80 × 10−6 S/cm at room temperature. Relaxation occurred as a result of the charge carrier hopping between the localized state and the correlated barriers hopping model, describing the dominant mechanism, as presented in an electrical modulus analysis. These results indicate that the PVA-TiO2/Cu nanocomposite samples can be used in energy storage capacitor applications and in the alternative separator-rechargeable lithium-ion battery industry.

Funder

Research & Innovation, Ministry of Education, Saudi Arabia, Qassim University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3