Dry Sliding Wear Behavior and Mild–Severe Wear Transition of the AA2195-T6 Alloy under Different Loads

Author:

Chen Qingqiang12,Yu Yalei2,Ma Guanjie2,Sun Xingzi2,Lu Laixiao2

Affiliation:

1. Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China

2. School of Mechanical and Electronic Engineering, Shandong Jianzhu University, Jinan 250101, China

Abstract

The mild–severe wear transition of aluminum alloys is considered evidence that the wear changes from a stable state to an unstable state, which is of great importance in engineering applications. The purpose of this study is to evaluate the mild–severe wear transition of the 2195 Al–Li alloy for different loads and to elucidate the causes behind it. To this end, dry sliding tribometric tests were carried out by varying the normal load from 2 to 40 N at room temperature. The results show that the change in wear rate can be divided into three distinct stages, including weak growth at low load (2–4 N), rapidly increased growth at medium load (8–16 N), and gradually increased growth at high load (32–40 N). The transition from mild to severe wear is observed at loads ranging from 4 to 8 N. Characterization of the worn surface of the Al–Li alloy via scanning electron microscopy shows that abrasion and oxidation are the dominant wear phenomena in the mild wear regime. On the other hand, delamination, adhesion, and severe plastic deformation become dominant in the severe wear regime. The reason for the occurrence of the transition is the tribo-induced plastic deformation of the substrate.

Funder

Natural Science Foundation of Shandong Provincial, China

Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3