Effect of Nano-Y2O3 on the Microstructure and Properties of Fe-Cr-C-N-Al Surfacing Alloy

Author:

Ai Xingyu1,Liu Zhengjun1ORCID,Zou Zongxuan1

Affiliation:

1. Department of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China

Abstract

In this paper, Fe-Cr-C-N-Al-Y wear-resistant surfacing alloy was prepared by open-arc surfacing with self-shielded flux-cored wire. The wear properties of the surfacing alloy were analyzed using an MLS-23 rubber wheel wet sand wear tester. The phase composition and microstructure of the surfacing alloy were analyzed using X-ray diffraction, scanning electron microscope, electron backscatter diffraction and transmission electron microscope; the strengthening mechanism and wear mechanism of the alloy were discussed. The results show that the microstructure of Fe-Cr-C-N-Al-Y surfacing alloy is composed of M + γ-Fe + M7C3 + AlN. When the content of nano-Y2O3 is 0.456 wt.%, the formability of the surfacing alloy is the best, and the wetting angle is the smallest, which is 50.8°; AlN and M7C3 precipitate the most, and the microstructure grain is the smallest. At this time, the hardness value of the surfacing alloy is up to 62.3 HRC, which is 11.8% higher than that of the unmodified surfacing alloy. The minimum wear weight loss is 0.125 g, and the wear resistance is increased by 41.86%. The wear mechanism of the surfacing alloy is mainly a plastic deformation mechanism, and the material removal processes are microcutting and furrow wear. This study provides theoretical guidance for refining primary carbides and improving the wear resistance of high chromium cast iron.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3