A Brief Review of Sodium Bismuth Titanate-Based Lead-Free Materials for Energy Storage: Solid Solution Modification, Metal/metallic Oxide Doping, Defect Engineering and Process Optimizing

Author:

Li Zhuo1,Yang Qiangbin1,Wang Chenbo1,Zhang Jiayong1,Wang Zixuan1,Gao Boyang1,Li Zhe1,Wang Zhuo1,Yan Xin1,Ai Tao1ORCID,Wang Dawei2ORCID,Niu Yanhui1

Affiliation:

1. School of Materials Science and Engineering, Chang’an University, Xi’an 710061, China

2. Functional Materials and Acousto-Optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China

Abstract

With the ever-increasing demand for energy, research on energy storage materials is imperative. Thereinto, dielectric materials are regarded as one of the potential candidates for application in advanced pulsed capacitors by reason of their ultrahigh energy-storage density, low energy loss, and good thermal stability. Among the numerous dielectric materials for energy storage, sodium bismuth titanate (Bi0.5Na0.5TiO3, BNT) with high saturation polarization, as one of the successful alternatives to lead-based materials, has been extensively studied. However, degraded dielectric and ferroelectric properties as a consequence of chemical alterations usually produced by inhomogeneity in microstructure and composition due to the ion volatilization during preparing, thus affecting performance of devices. Hence, this review served to encompass the current state and progress on the optimization of energy storage performance in lead-free BNT-based materials over the past few years, including ceramics, multilayer ceramics, thin films, and thick films, involved in solid solution modification, metal/metallic oxide doping, process optimization and other related aspects to optimize energy storage performance. Furthermore, some prospective approach in the improvement of energy storage performance for BNT-based materials were also provided in this work according to the existing theoretical and experimental results, to impel their practical application.

Funder

National Natural Science Foundations of China

Natural Science Foundation of Shaanxi province

Fundamental Research Funds for the Central Universities

Key Research and Development Projects of Shaanxi Province

Innovation and Entrepreneurship of Chang’an University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference62 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3