Substrate Structured Bournonite CuPbSbS3 Thin Film Solar Cells

Author:

Lin Limei12,Da Rui12,Zheng Chenqi12,Zeng Ruibo12,Ding Junda12

Affiliation:

1. Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China

2. Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou 350117, China

Abstract

CuPbSbS3 has excellent photoelectric properties, such as high element abundance and optical absorption coefficient, and a suitable band gap, which is a material with the potential for absorbing layers of high-quality thin film solar cells. In addition, CuPbSbS3 is a material with a three-dimensional structure, which can guide the carrier to transport in all directions, so its performance can be regulated in multiple dimensions. At present, the substrate structure is often used in efficient solar cells since this structure does not affect other functional layers when the absorption layer is subjected to harsh annealing conditions. However, there have been no reports of the substrate structure of CuPbSbS3 solar cells so far. Therefore, in this work, CuPbSbS3 films deposited on a stable substrate of molybdenum (Mo) were prepared with butyldithiocarbamic acid (BDCA) solution, and the preparation process of reaction mechanism was described in detail. It was found that the band gap of the CuPbSbS3 thin film was 2.0 eV and the absorption coefficient was up to 105 cm−1, which is expected to be applied to the top absorption layer material in laminated cells. Thus, we first built a Glass/Mo/CuPbSbS3/CdS/ZnO/ITO substrate structured solar cell. From this, a photoelectric conversion efficiency of 0.094% was achieved. This work provides a tentative exploration for the future development of substrate structured CuPbSbS3 solar cells.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3