High Uniformity 6-Inch InGaP Epitaxial Growth

Author:

Yang Shangyu12ORCID,Guo Ning12,Pei Yicheng13,Yuan Weilong13,Li Yunkai12,Zhao Siqi12ORCID,Zhang Yang124,Liu Xingfang124

Affiliation:

1. Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China

2. College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China

3. School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China

4. Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, China

Abstract

The growth of 6-inch In0.485Ga0.515P has been examined in this study. The effects of growth temperature, the V/III ratio, and the H2 total flow on solid composition, growth rate, and crystal quality have been systematically investigated and discussed. Additionally, the effect of growth conditions on doping efficiency has been investigated. Finally, the relationship between electrical uniformity, optical uniformity, and the growth conditions of the 6-in epitaxial layer is discussed. At a growth temperature of 600 °C and a V/III of 250, a high uniformity 6-in InGaP epitaxial layer with an electrical uniformity of 0.33% and optical uniformity of 0.03% was produced. InGaP was grown by the metal-organic chemical vapor deposition method in an Aixtron 2800G4 reactor. High resolution X-ray diffraction (HRXRD), photoluminescence (PL), sheet resistance, electrochemical capacitance-voltage (ECV), and the Hall effect were used to characterize the characteristics of InGaP epitaxial layers.

Funder

Key-Area Research and Development Program of Guangdong Province

Youth Innovation Promotion Association of Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3