Affiliation:
1. State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
Abstract
In this paper, the tensile deformation behaviors of polycrystals after relaxation were studied using the phase-field-crystal (PFC) method. Here, the free energy density map characterized the 2D energy distribution of atomic configuration effectively. The application of the Read–Shockley equation distinguished high-energy grain boundary (HEGB) and low-energy grain boundary (LEGB) in large-angle grain boundary (LAGB), and they demonstrated different migration behaviors at the early and later stages. The behaviors of small-angle grain boundary (SAGB), including its migration and grains’ rotation, were also studied. Two different mechanisms of dislocation emission and absorption were explored, which demonstrates the possibility of dislocation elevating interfacial energy. The simulated results on the topological transition of grain boundaries prompted us to propose the thinking about the applications of the Neumann–Mullins law and Euler formula.
Funder
National Natural Science Foundation of China
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献