Pressure-Induced Structural Phase Transition of Co-Doped SnO2 Nanocrystals

Author:

Panchal Vinod1,Pampillo Laura2,Ferrari Sergio2,Bilovol Vitaliy23,Popescu Catalin4ORCID,Errandonea Daniel5ORCID

Affiliation:

1. Department of Physics, Royal College, Mumbai 401107, India

2. Consejo Nacional de lnvestigaciones Científicas y Técnicas, Instituto de Tecnología y Ciencias de la Ingeniería “Hilario Fernández Long” (INTECIN), Universidad de Buenos Aires, Av. Paseo Colón 850, Ciudad Autónoma de Buenos Aires C1063ACV, Argentina

3. Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland

4. CELLS-ALBA Synchrotron Light Facility, Cerdanyola del Vallés, 08290 Barcelona, Spain

5. Departamento de Física Aplicada, Instituto de Ciencias de Materiales, MALTA Consolider Team, Universitat de Valencia, 46100 Valencia, Spain

Abstract

Co-doped SnO2 nanocrystals (with a particle size of 10 nm) with a tetragonal rutile-type (space group P42/mnm) structure have been investigated for their use in in situ high-pressure synchrotron angle dispersive powder X-ray diffraction up to 20.9 GPa and at an ambient temperature. An analysis of experimental results based on Rietveld refinements suggests that rutile-type Co-doped SnO2 undergoes a structural phase transition at 14.2 GPa to an orthorhombic CaCl2-type phase (space group Pnnm), with no phase coexistence during the phase transition. No further phase transition is observed until 20.9 GPa, which is the highest pressure covered by the experiments. The low-pressure and high-pressure phases are related via a group/subgroup relationship. However, a discontinuous change in the unit-cell volume is detected at the phase transition; thus, the phase transition can be classified as a first-order type. Upon decompression, the transition has been found to be reversible. The results are compared with previous high-pressure studies on doped and un-doped SnO2. The compressibility of different phases will be discussed.

Funder

Generalitat Valenciana

European Union, NextGenerationEU

Spanish Research Agency

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference46 articles.

1. Nanocrystalline materials;Gleiter;Prog. Mater. Sci.,1989

2. Cluster-assembled nanophase materials;Siegel;Annu. Rev. Mater. Sci.,1991

3. Magnetic Nanoparticles;Kodama;J. Magn. Magn. Mater.,1999

4. Effect on grain size on pressure-induced structural transition in Mn3O4;Lv;J. Phys. Chem. C,2012

5. Making Yb2Hf2O7 Defect Fluorite Uncompressible by Particle Size Reduction;Srihari;J. Phys. Chem. C,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3